Set of convex regular p-gons | |
---|---|
Regular polygons |
|
Edges and vertices | n |
Schläfli symbol | {n} |
Coxeter–Dynkin diagram | |
Symmetry group | Dn, order 2n |
Dual polygon | Self-dual |
Area (with t=edge length) |
|
Internal angle | |
Internal angle sum | |
Properties | convex, cyclic, equilateral, isogonal, isotoxal |
A regular polygon is a polygon that is equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Regular polygons may be convex or star.
Contents |
These properties apply to all regular polygons, whether convex or star.
A regular n-sided polygon has rotational symmetry of order n.
All vertices of a regular polygon lie on a common circle (the circumscribed circle), i.e., they are concyclic points.
Together with the property of equal-length sides, this implies that every regular polygon also has an inscribed circle or incircle that is tangent to every side at the mid-point.
A regular n-sided polygon can be constructed with compass and straightedge if and only if the odd prime factors of n are distinct Fermat primes. See constructible polygon.
The symmetry group of an n-sided regular polygon is dihedral group Dn (of order 2n): D2, D3, D4,... It consists of the rotations in Cn, together with reflection symmetry in n axes that pass through the center. If n is even then half of these axes pass through two opposite vertices, and the other half through the midpoint of opposite sides. If n is odd then all axes pass through a vertex and the midpoint of the opposite side.
All regular simple polygons (a simple polygon is one that does not intersect itself anywhere) are convex. Those having the same number of sides are also similar.
An n-sided convex regular polygon is denoted by its Schläfli symbol {n}.
Equilateral triangle {3} |
Square {4} |
Pentagon {5} |
Hexagon {6} |
Heptagon {7} |
Octagon {8} |
Enneagon {9} |
Decagon {10} |
|
Hendecagon {11} |
Dodecagon {12} |
Tridecagon {13} |
Tetradecagon {14} |
Pentadecagon {15} |
Hexadecagon {16} |
Heptadecagon {17} |
Octadecagon {18} |
Enneadecagon {19} |
icosagon {20} |
Triacontagon {30} |
Tetracontagon {40} |
Pentacontagon {50} |
Hexacontagon {60} |
Heptacontagon {70} |
Octacontagon {80} |
Enneacontagon {90} |
Hectogon {100} |
In certain contexts all the polygons considered will be regular. In such circumstances it is customary to drop the prefix regular. For instance, all the faces of uniform polyhedra must be regular and the faces will be described simply as triangle, square, pentagon, etc.
For a regular convex n-gon, each interior angle has a measure of:
and each exterior angle (supplementary to the interior angle) has a measure of degrees, with the sum of the exterior angles equal to 360 degrees or 2π radians or one full turn.
For the number of diagonals is , i.e., 0, 2, 5, 9, ... for a triangle, quadrilateral, pentagon, hexagon, .... The diagonals divide the polygon into 1, 4, 11, 24, ... pieces.
For a regular n-gon inscribed in a unit-radius circle, the product of the distances from a given vertex to all other vertices (including adjacent vertices and vertices connected by a diagonal) equals n.
The radius from the centre of a regular polygon to one of the vertices is related to the side length, s or apothem, a:
The area A of a convex regular n-sided polygon having side s, apothem a, perimeter p, and circumradius r is given by [1]
For regular polygons with side s=1, resp. circumradius r=1, resp. apothem a=1, this produces the following table:[2]
Sides | Name | Exact area (s=1) |
Approximate area (s=1) |
Exact area (r=1) |
Approximate area (r=1)) |
Approximate area as fraction of circle (r=1) |
Exact area (a=1) |
Approximate area (a=1)) |
Approximate area as fraction of circle (a=1) |
---|---|---|---|---|---|---|---|---|---|
n | regular n-gon | ||||||||
3 | equilateral triangle | 0.433012702 | 1.299038105 | 0.4134966714 | 5.196152424 | 1.653986686 | |||
4 | square | 1.000000000 | 2.000000000 | 0.6366197722 | 4.000000000 | 1.273239544 | |||
5 | regular pentagon | 1.720477401 | 2.377641291 | 0.7568267288 | 3.632712640 | 1.156328347 | |||
6 | regular hexagon | 2.598076211 | 2.598076211 | 0.8269933428 | 3.464101616 | 1.102657791 | |||
7 | regular heptagon | 3.633912444 | 2.736410189 | 0.8710264157 | 3.371022333 | 1.073029735 | |||
8 | regular octagon | 4.828427125 | 2.828427125 | 0.9003163160 | 3.313708500 | 1.054786175 | |||
9 | regular nonagon | 6.181824194 | 2.892544244 | 0.9207254290 | 3.275732109 | 1.042697914 | |||
10 | regular decagon | 7.694208843 | 2.938926262 | 0.9354892840 | 3.249196963 | 1.034251515 | |||
11 | regular hendecagon | 9.365639907 | 2.973524496 | 0.9465022440 | 3.229891423 | 1.028106371 | |||
12 | regular dodecagon | 11.19615242 | 3.000000000 | 0.9549296586 | 3.215390309 | 1.023490523 | |||
13 | regular triskaidecagon | 13.18576833 | 3.020700617 | 0.9615188694 | 3.204212220 | 1.019932427 | |||
14 | regular tetradecagon | 15.33450194 | 3.037186175 | 0.9667663859 | 3.195408642 | 1.017130161 | |||
15 | regular pentadecagon | 17.64236291 | 3.050524822 | 0.9710122088 | 3.188348426 | 1.014882824 | |||
16 | regular hexadecagon | 20.10935797 | 3.061467460 | 0.9744953584 | 3.182597878 | 1.013052368 | |||
17 | regular heptadecagon | 22.73549190 | 3.070554163 | 0.9773877456 | 3.177850752 | 1.011541311 | |||
18 | regular octadecagon | 25.52076819 | 3.078181290 | 0.9798155361 | 3.173885653 | 1.010279181 | |||
19 | regular enneadecagon | 28.46518943 | 3.084644958 | 0.9818729854 | 3.170539238 | 1.009213984 | |||
20 | regular icosagon | 31.56875757 | 3.090169944 | 0.9836316430 | 3.167688806 | 1.008306663 | |||
100 | regular hectagon | 795.5128988 | 3.139525977 | 0.9993421565 | 3.142626605 | 1.000329117 | |||
1000 | regular chiliagon | 79577.20975 | 3.141571983 | 0.9999934200 | 3.141602989 | 1.000003290 | |||
10000 | regular myriagon | 7957746.893 | 3.141592448 | 0.9999999345 | 3.141592757 | 1.000000033 | |||
1,000,000 | regular megagon | 79,577,471,545.685 | 3.141592654 | 1.000000000 | 3.141592654 | 1.000000000 |
Of all n-gons with a given perimeter, the one with the largest area is regular.[3]
The cube contains a skew regular hexagon, seen as 6 red edges zig-zagging between two planes perpendicular to the cube's diagonal axis. |
The zig-zagging side edges of a n-antiprism represent a regular skew 2n-gon, as show in this 17-gonal antiprism. |
A regular skew polygon in 3-space can be seen as nonplanar paths zig-zagging between two parallel planes, defined as the side-edges of a uniform antiprism. All edges and internal angles are equal.
The Platonic solids (the tetrahedron, cube, octahedron, dodecahedron, and icosahedron) have Petrie polygons, seen in red here, with sides 4, 6, 6, 10, and 10 respectively. |
More generally skew regular polygons can be defined in n-space. Examples include the Petrie polygons, polygonal paths of edges that divide a regular polytope into two halves, and seen as a regular polygon in orthogonal projection.
In the infinite limit skew regular polygons become skew apeirogons.
A non-convex regular polygon is a regular star polygon. The most common example is the pentagram, which has the same vertices as a pentagon, but connects alternating vertices.
For an n-sided star polygon, the Schläfli symbol is modified to indicate the density or 'starriness' m of the polygon, as {n/m}. If m is 2, for example, then every second point is joined. If m is 3, then every third point is joined. The boundary of the polygon winds around the centre m times.
The (non-degenerate) regular stars of up to 12 sides are:
m and n must be co-prime, or the figure will degenerate.
The degenerate regular stars of up to 12 sides are:
Depending on the precise derivation of the Schläfli symbol, opinions differ as to the nature of the degenerate figure. For example {6/2} may be treated in either of two ways:
All regular polygons are self-dual to congruency, and for odd n they are self-dual to identity.
In addition, the regular star figures (compounds), being composed of regular polygons, are also self-dual.
A uniform polyhedron has regular polygons as faces, such that for every two vertices there is an isometry mapping one into the other (just as there is for a regular polygon).
A quasiregular polyhedron is a uniform polyhedron which has just two kinds of face alternating around each vertex.
A regular polyhedron is a uniform polyhedron which has just one kind of face.
The remaining (non-uniform) convex polyhedra with regular faces are known as the Johnson solids.
A polyhedron having regular triangles as faces is called a deltahedron.
f := proc (n) options operator, arrow; [(1/2)*n*sin(2*Pi/n), convert(n*sin(2*Pi/n)/2, float), convert((1/2)*n*sin(2*Pi/n)/Pi, float), n*tan(Pi/n), convert(n*tan(Pi/n), float), convert(n*tan(Pi/n)/Pi, float)] end proc
|